Visualization, Analysis, and Design of COMBO-FISH Probes in the Grid-Based GLOBE 3D Genome Platform
نویسندگان
چکیده
The genome architecture in cell nuclei plays an important role in modern microscopy for the monitoring of medical diagnosis and therapy since changes of function and dynamics of genes are interlinked with changing geometrical parameters. The planning of corresponding diagnostic experiments and their imaging is a complex and often interactive IT intensive challenge and thus makes high-performance grids a necessity. To detect genetic changes we recently developed a new form of fluorescence in situ hybridization (FISH) - COMBinatorial Oligonucleotide FISH (COMBO-FISH) - which labels small nucleotide sequences clustering at a desired genomic location. To achieve a unique hybridization spot other side clusters have to be excluded. Therefore, we have designed an interactive pipeline using the grid-based GLOBE 3D Genome Viewer and Platform to design and display different labelling variants of candidate probe sets. Thus, we have created a grid-based virtual "paper" tool for easy interactive calculation, analysis, management, and representation for COMBO-FISH probe design with many an advantage: Since all the calculations and analysis run in a grid, one can instantly and with great visual ease locate duplications of gene subsequences to guide the elimination of side clustering sequences during the probe design process, as well as get at least an impression of the 3D architectural embedding of the respective chromosome region, which is of major importance to estimate the hybridization probe dynamics. Beyond, even several people at different locations could work on the same process in a team wise manner. Consequently, we present how a complex interactive process can profit from grid infrastructure technology using our unique GLOBE 3D Genome Platform gateway towards a real interactive curative diagnosis planning and therapy monitoring.
منابع مشابه
COMBO-FISH for focussed fluorescence labelling of gene domains: 3D-analysis of the genome architecture of abl and bcr in human blood cells.
Structural analysis and nanosizing of gene domains requires not only high-resolution microscopy but also improved techniques of fluorescence labelling strongly focussed on the gene domains. To investigate the architecture of abl and bcr in blood cell nuclei forming the Philadelphia chromosome in CML, we applied COMBO-FISH using specifically colocalising combinations of triple strand forming oli...
متن کاملCOMBO-FISH Enables High Precision Localization Microscopy as a Prerequisite for Nanostructure Analysis of Genome Loci
With the completeness of genome databases, it has become possible to develop a novel FISH (Fluorescence in Situ Hybridization) technique called COMBO-FISH (COMBinatorial Oligo FISH). In contrast to other FISH techniques, COMBO-FISH makes use of a bioinformatics approach for probe set design. By means of computer genome database searching, several oligonucleotide stretches of typical lengths of ...
متن کاملdesigning and implementing a 3D indoor navigation web application
During the recent years, the need arises for indoor navigation systems for guidance of a client in natural hazards and fire, due to the fact that human settlements have been complicating. This research paper aims to design and implement a visual indoor navigation web application. The designed system processes CityGML data model automatically and then, extracts semantic, topologic and geometric...
متن کاملCOMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations.
Here we present the principle of fluorescence in situ hybridization (FISH) with combinatorial oligonucleotide (COMBO) probes as a new approach for the specific labeling of genomic sites. COMBO-FISH takes advantage of homopurine/homopyrimidine oligonucleotides that form triple helices with intact duplex genomic DNA, without the need for prior denaturation of the target sequence that is usually a...
متن کاملSuper-resolution imaging of a 2.5 kb non-repetitive DNA in situ in the nuclear genome using molecular beacon probes
High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To target shorter elements, we developed ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Studies in health technology and informatics
دوره 159 شماره
صفحات -
تاریخ انتشار 2010